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Abstract. We survey some recent results on finding and counting per-
fect matchings in regular bipartite graphs, with applications to bipar-
tite edge-colouring and the dimer constant. Main results are improved
complexity bounds for finding a perfect matching in a regular bipartite
graph and for edge-colouring bipartite graphs, the solution of a problem
of Erdés and Rényi concerning lower bounds for the number of perfect
matchings, and an improved lower bound for s dimer constant.

1 Finding a Perfect Matching in a Regular Bipartite
Graph

The fastest known algorithms for finding a perfect matching in a general bipartite
graph have running time of order about O(y/n m) (Hopcroft and Karp [12], Feder
and Motwani [8]) or O(n?378) (Ibarra and Moran [13]). For regular bipartite
graphs, however, faster algorithms are known: Cole and Hopcroft [4] gave an
O(mlogn) algorithm, while Cole [3] gave an O(220(k)n) algorithm, where k is
the degree of the vertices. So the latter algorithm is linear-time for any fixed k.
We now describe an easy O(k2n) (= O(km)) algorithm ([17]). Here is the idea
for k = 3.

Let G be a 3-regular bipartite graph. Find a circuit C in G, by finding a
path Q = vg, e1,v1,..., till we arrive at a vertex vx where we have been before
(that is, v = v; for some i < k). Next delete from G every second edge of C.
The remaining edges of C form the middle edges of paths of length 3 in the
remaining graph G’. Replace each such path P by an edge ep connecting the
ends of P. The resulting graph G” is 3-regular and bipartite. Find recursively a
perfect matching M in G”. Replace any edge ep that occurs in M by the two
end edges of P. For each of the other paths P, add its middle edge to M. This
gives a perfect matching in G/, hence in G, as required.

To obtain a linear-time algorithm, one should use in the recursion the tail
vg, €1, V1, - - ., ; Of the path @ to find the next circuit in G”. Then the time spent
on running through the tail when finding the successive circuits will not be lost,
and any recursive step takes amortized time |V C|. Since in any recursive step,
the size of the graph reduces also by |V C|, the algorithm is linear-time.

This gives the theorem of Cole [3]:
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Theorem 1. A perfect matching in a 3-reqular bipartite graph can be found in
linear time.

We next describe the extension to k-regular bipartite graphs. This uses a
weighting of the edges.

Let G = (V,E) be a k-regular bipartite graph. Initially, set w(e) := 1 for
each edge e. Next, iteratively, find a circuit C in G, split the edge set EC of C
into two matchings M and N, in such a way that

S wle) =Y ule), (1)
eEM eeEN
reset w(e) :=w(e) + 1 if e € M and w(e) := w(e) — 1 if e € N, delete the edges
e with w(e) = 0, and iterate.
Again we find C by following a path, and we keep its tail (if nontrivial) for
the next iteration. Note that the resetting maintains the property

Zw(e) = k for each vertex v. (2)

e3v

So as long as there exist edges e with w(e) < k, we can find a circuit. Hence, the
iterations stop if w(e) = k for each edge e. In that case, the edges form a perfect
matching, and we are done.

The key to estimating the running time is considering

3 w(e). 3)

ecE

This sum is bounded by %klel. Moreover, in any iteration, this sum increases
by

Y (&) +1)* —w(ef) + Y ((w(e) — 1)* — w(e)?)

eeM eeEN
=Y (2u(e) +1) + > (~2u(e) + 1) > |M| + |N| = |EC]| (4)
eEM eEN

(by (1)). Since the amortized time of any iteration is proportional to |EC|, this
gives an O(k?n) = O(km) running time bound ([17]):

Theorem 2. A perfect matching in a k-regular bipartite graph can be found in
O(km) time.

2 Edge-Colouring

The latter result implies an O(km) algorithm for finding an optimum edge-
colouring of a bipartite graph G, where k denotes the maximum degree. (An

optimum edge-colouring colours the edges with k colours such that each colour
forms a matching.)
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ve that one trivially obtains an O(k?m) algorithm. Indeed, we can
«e bipartite graph G is k-regular (as we can extend G to a k-regular
h, in linear time). Then iteratively find a perfect matching in G
rom G. The successive perfect matchings form the colours. This
y applying k times the O(km) algorithm, yielding O(k*m).

7ith a method of Gabow [10], one may speed up this. If & is odd,
matching in G and delete it from G. If k is even, find an Eulerian
G (that is, an orientation such that the indegree in each vertex
outdegree). This can be done in linear time. Next split the edge
0 the set E; of edges oriented from one colour class of G to the
. set Ey of edges oriented in the opposite direction. Then (V, E;)
> Lk-regular bipartite graphs, in which we can find optimum edge-
arsively. Combining them gives an optimum edge-colouring of G.
ime is

O(km + 2(3kim) + 4(3kim) + - --) = O(km). (5)

An optimum edge-colouring of a bipartite graph can be found in
wvhere k is the mazimum degree.

Up of Cole, Ost, and Schirra

km) algorithm for perfect matching in k-regular bipartite graphs
ition if there is a linear-time algorithm, independent of k. This was
vely by Cole, Ost, and Schirra [5], by a refinement of the method
g the data-structure of ‘self-adjusting binary trees’. We outline

>rovement is not to replace w(e) by w(e) £ 1 for the edges in C,
a, where « is the minimum weight of the edges in N. So at least
gets weight 0.

mprovement is to store the paths (‘chains’) left in the circuit C

g the edges of weight 0), so that these chains can be used to speed

it searches. This requires that if in a later circuit search we hit

1, then relatively fast we should be able to identify the ends of the

have to follow the chain vertex by vertex till its end, no gain in

is obtained.) This can be done by supplying these chains with the

- of self-adjusting binary trees (cf. Tarjan [19]). To get the required
it turns out that these chains should have length at most k2 — in

they are longer, split them into chains of length about k2.

provement is a preprocessing that reduces the number of edges of

n 3kn to at most nlog, k. This is obtained as follows. Start with

=1 for each edge e. Next, successively, for ¢ =0,1,..., |log, k], do
Consider the set E; of edges of weight 2¢. Iteratively (as above)

C in E;, split EC arbitrarily into matchings M and N, and reset
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w(e) ;= w(e) +2¢ = 2i+! if e € M and w(e) == w(e) —2° =0ife € N. (So in
each iteration, the set E; changes.) In linear time we arrive at the situation that
E; contains no circuits, implying |E;| < n— 1. Then we go over to the case i+ 1.
So we end up with at most (about) nlog, k edges, together with a weighting w
satisfying (2).

For each i, the preprocessing takes time linear in the size of the initial Ej,
which is at most 2~*m. Hence the preprocessing takes O(m) time in total. It
turns out that, using the first two improvements, the rest of the algorithm takes
O(nlog® k) only, which is faster than O(m).

This gives the theorem of Cole, Ost, and Schirra [5]:

Theorem 4. A perfect matching in a regular bipartite graph can be found in
linear time.

With the method described in Section 2, it has as consequence:

Corollary 1. An optimum edge-colouring of a bipartite graph can be found in
O(mlogk) time, where k is the mazimum degree.

4 From Finding to Counting Perfect Matchings

We now go over to the problem of counting perfect matchings, or rather giving a
lower bound for their number. We first relate the algorithm described in Section
1, for finding a perfect matching in a 3-regular bipartite graph, to a lower bound
of Voorhoeve [21] on the number of such perfect matchings.

To this end, we modify the algorithm slightly. We may note that when fol-
lowing the path @ in finding the circuit, we can start immediately from the
beginning with removing edges. We don’t have to wait till we have a circuit.
This can be made more precise as follows.

Call a bipartite graph almost 3-regular if all vertices have degree 3, except for
two vertices of degree 2 (automatically belonging to different colour classes). So
an almost 3-regular bipartite graph arises by deleting one edge from a 3-regular
bipartite graph. Hence a linear-time algorithm for finding a perfect matching
in an almost 3-regular bipartite graph yields the same for 3-regular bipartite
graphs. We describe such an algorithm.

Let G be an almost 3-regular bipartite graph, and let u be any of the two
vertices of degree 2. To find a perfect matching, we can assume that u is not
incident with the other vertex of degree 2, and that it has two distinct neighbours,
z and y say. (Otherwise, there is an easy reduction.)

Let u, 5,¢ be the neighbours of z. Delete edge zs. Then edge ux becomes the
middle edge of a path P = (y,u,z,t). Replace it by a new edge ep connecting
y and t. Find recursively a perfect matching M in the new graph G’. If ep is in
M, replace it by yu and xt. If ep is not in M, add uz to M. We end up with a
perfect matching in G.

As each iteration takes constant time, and as it reduces the number of vertices
by 2, this gives a linear-time algorithm. This might be easier to implement than
the algorithm described earlier, since only local operations are performed.
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This method is in fact inspired by the method of Voorhoeve [21] to prove
that any 3-regular bipartite graph has at least

(3" (6)

perfect matchings, where, for convenience, n denotes half of the number of ver-
tices. To prove this bound, it suffices to show that each almost 3-regular bipartite
graph has at least (%)" perfect matchings. Again, choose a vertex u of degree 2,
and we may assume that it has two distinct neighbours of degree 3. (Otherwise,
there is an easy induction.) Let ey, ..., e4 be the edges incident with a neighbour
of u but not with . For i = 1,...,4, let G; be the graph obtained from G by
deleting edge e;. Denote the number of perfect matchings in any graph H by
m(H). Then, by induction,

m(Gi) = (3" (7

for i = 1,...,4, since replacing the path of length 3 through u by a new edge,
gives an almost 3-regular bipartite graph H; with 2(n — 1) vertices and with
w(H;) = n(G;). Moreover,

7(G1) + -+ +7(Gy) = 3n(G), (8)

since each perfect matching M in G is maintained in precisely three of the G; (as
M contains precisely one of e1, ... . , e4). Combining (7) and (8) gives 7(G) > (3)",
as required.

Incidentally, this may look like an exact inductive calculation of m(G), but
strict inequality is obtained in the reduction if » has no two distinct neighbours
of degree 3.

So we have proved the theorem of Voorhoeve [21]:

Theorem 5. Any 3-reqular bipartite graph on 2n vertices has at least (%)” per-
fect matchings.

With this, Voorhoeve answered a question posed by Erdés and Rényi [6]
whether there exists an exponential lower bound on the number of perfect match-
ings in 3-regular bipartite graphs. (The best bound proved before is only linear
in n.)

Erd6s and Rényi formulated their question in terms of permanents, which
relates to the Van der Waerden conjecture (which was not yet proved when
Voorhoeve gave his bound). The permanent of an n x n matrix A = (a; ;) is

perd := Z H Qi (i) (9)

T =1
where the sum ranges over all permutations 7 of {1,...,n}. So if A is nonnegative
and integer, and we make the bipartite graph G with colour classes {us,...,un}
and {vy,...,v,} and with a;; edges connecting u; and vj (for 4,5 =1,...,n),

then perA is equal to the number of perfect matchings in G.
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Call a matrix k-regular if it is nonnegative and integer and if each row sum
and each column sum is equal to k. Then Erd8s and Rényi asked for an expo-
nential lower bound for the permanents of 3-regular matrices.

The Van der Waerden conjecture (van der Waerden [22]) asserts that the
permanents of any n X n doubly stochastic matrix is at least

n!
= (10)
(A matrix is doubly stochastic if it is nonnegative and each row sum and each
column sum is equal to 1.) The value (10) is attained if all entries of the matrix
are equal to -71; Van der Waerden’s conjecture remained open for more than
half a century, despite considerable research efforts, and was finally proved by
Falikman [7].

For each k-regular matrix A, the matrix %A is doubly stochastic and satisfies
per; A = k"perA. So Van der Waerden’s conjecture implies that the permanent
of any k-regular matrix is at least

k™n! k

pra (-g)”. (11)

(This consequence in fact can be seen to be equivalent to Van der Waerden’s
conjecture.) Hence also Falikman’s theorem implies an exponential lower bound
on the number of perfect matchings in 3-regular bipartite graphs. The lower
bound (é)” was proved by Bang [1] and Friedland [9], thus also providing a
solution of Erdés and Rényi’s question.

It can be proved that the ground number % in Voorhoeve’s bound is best
possible ([18]). To this end, let ug be the largest real such that each 3-regular
bipartite graph on 2n vertices has at least u% perfect matchings. So ug > %.

To prove the reverse inequality, fix n, and consider the collection G of 3-

regular bipartite graphs with colour classes {u1,...,un} and {v1,...,v,} and
with (labeled) edges e1,. .., es,. Then
(3n)1\ 2
|G| = <—3‘,n— : (12)
Indeed, it is equal to the square of the number of ordered partitions of {1,...,3n}

into n classes of size 3.
We can also precisely count for how many graphs G in G, a given subset M
of {1,...,3n} of size n forms a perfect matching in G:

(n!%tl{)z. (13)

Since M can be chosen in (3:) ways, this implies that the number of pairs G, M
with G € G and M is a perfect matching in G is equal to

(3:) (m%@l)z (14)
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By (12) and by definition of us, (14) has as lower bound:

((Zﬁ?!)zug. (15)

ws ()OS G5)) s

(The latter limit uses Stirling’s formula.) So ug = 3.

Therefore,

5 General k

Erdds and Rényi also asked for the value, for any k, of the largest real pj such
that each k-regular bipartite graph G on 2n vertices has at least u} perfect
matchings. So by Falikman’s theorem (in fact, already by the results of Bang
and Friedland), py > f On the other hand, the same method as just described
gives ([18])
k-1
pr < (k—kk—l;)—z— (17)

In [18] it was also conjectured that equality holds:

k=1
we= EDT (18)

This in fact was be proved in [16]. Hence:

Theorem 6. Fach k-regular bipartite graph with 2n vertices has at least

perfect matchings.

In contrast with the simplicity of Voorhoeve’s method for the case k = 3, the
proof for general k is highly complicated. It is based on a technique of assigning
weights to the edges of the graph similar to the algorithm for finding a perfect
matching in a k-regular bipartite graph described in Section 1.

Let us briefly relate this bound to Falikman’s bound. Both bounds are asymp-
totically best possible, in different asymptotic directions. Let u(k,n) denote the
minimum permanent of k-regular n x n matrices. (Equivalently, of the minimum
number of perfect matchings, taken over all k-regular bipartite graphs with 2n
vertices.) So

i = inf (ks n)'/". (20)



20 A. Schrijver

Then in one asymptotic direction one has by (18):
k—1
ok, 1 k-1
e T = —— . 21
Bl =% P k (1)
In another direction, by Falikman’s theorem:

. u(k,n)l/" B n!l/”
S @)

Note that both in (21) and in (22), the right-hand term converges to 1/e, if & or
n tends to infinity.

6 Application to the 3D Dimer Constant

We finally apply the lower bound described in Theorem 6 to obtain a better
lower bound for the 3-dimensional dimer problem. This is one of the classical
unsolved problems in solid-state chemistry. For integers d, n, consider the ‘block’
Hy n, which is the graph with vertex set {1,... ,n}d, two vertices being adjacent
if and only if their Euclidean distance is 1. In this context, an edge is called
a dimer, and a perfect matching a dimer tiling. Let t4,, denote the number of
dimer tilings of Hy . So tgn, > 0 if and only if n is even.
Hammersley [11] showed that

1
Ag 1= t
d: hm 3, B )d logtgon (23)
exists. In fact 1
nlim ( 5y < logtyon = sup (2 )2 logtd,an. (24)
Otherwise, there exists a k such that
1
lim inf ) - logtaan < (2k) 7 1ogty ok (25)
However,
n|d
taon = (ta2e)t®, (26)

since Hg o, contains [—%Jd disjoint copies of Hy 2 such that the rest has a perfect
matching. This implies that the left-hand side in (25) is at least
L“Jd
hm mf = logtq 2k, 27

which is equal to the right-hand side of (25) — a contradiction.
So Ay is defined. For d = 2, the value of Ay was determined precisely by
Kasteleyn [14] and Temperley and Fisher [20]:

}: (Zz+ 1 5 =0.29156090.. ... (28)
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The proof uses the fact that Hs, is planar, and that the graph therefore has a
‘Pfaffian’ orientation, making it possible to count dimer tilings by calculating a
determinant.

For dimensions larger than two, no such orientation exists, and no exact
formula for Ay is known. Since Hy, is bipartite and ‘almost’ 2d-regular, one
could try to apply the results obtained earlier. In fact one has:

Theorem 7. \g > -é—log/,z.gd. To see this, for each i € {1,...,d} and each
J € {1,2n}, let M; ; be a perfect matching in the subgraph of Hy o, spanned by
{ze{l,...,20}% | z; = 5}. (29)

(So this set represents a ‘face’ of Hgon.) Let H ,, be the 2d-regular bipartite
graph obtained from Hy s, by adding parallel edges for the edges in the M; ;.
Then H ¢Ii,2'n. has more perfect matching than Hg o, has, but not too much more:

T(Hjgn) < 290W 7 n( Hy an). (30)

This follows from the facts that we have added d(2n)?~! parallel edges, and that

adding any such edge at most doubles the number of perfect matchings.

: ’ (2n)¢/2 e
Since m(Hy 5,) 2> Hog (by definition of pa4), we have

- d
W(Hd,2n) > 2—d(2n)d lugzd") /2. (31)
Therefore,
1 d-1 d dlog?2
N _d(nydt @n)/2) _ 1 _dlog
Ad > sup oy log (2 g ) Sﬁp(g log pod o )
= % 1Og Had, (32)

proving Theorem 7.
Evaluation for d = 3 by using ug = 5°/6%, gives the best known lower bound
for As:
A3 > 0.44007584 .. .. (33)

The best known upper bound is due to Lundow [15]: 0.457547 . ... Computational
experiments of Beichl and Sullivan [2] suggest that A3 = 0.4466 + 0.0006.
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